Mathematics: analysis Standard Level	and approaches
Paper 1	WORKED SOLUTIONS
Date:	- LINORKED SOLO
1 hour 30 minutes	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Instructions to candidates

- Write your name in the box above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your name on each answer sheet and attach them to this examination paper.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- A clean copy of the **mathematics: analysis and approaches formula booklet** is required for this paper.
- The maximum mark for this examination paper is [80 marks].

exam: 9 pages

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer all questions in the boxes provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 6]

Let
$$f(x) = \cos 4x$$
 and $g(x) = e^{3x-1}$

(a) Find
$$f'(x)$$
. [2]

(b) Find
$$g'(x)$$
. [2]

(c) Let
$$h(x) = g(x) \times f(x)$$
. Find $h'(x)$. [2]

(a) Applying the chain rule:

$$f'(x) = (-\sin 4x)4$$

$$f'(x) = -4\sin 4x$$

(b) Applying the chain rule:

$$g'(x) = \left(e^{3x-1}\right)3$$

$$g'(x) = 3e^{3x-1}$$

(c)
$$h(x) = (e^{3x-1})(\cos 4x)$$

Applying the product rule:

$$h'(x) = (3e^{3x-1})(\cos 4x) + (e^{3x-1})(-4\sin 4x)$$

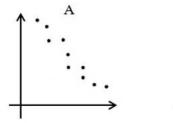
$$h'(x) = 3e^{3x-1}\cos 4x - 4e^{3x-1}\sin 4x$$
 or $h'(x) = e^{3x-1}(3\cos 4x - 4\sin 4x)$

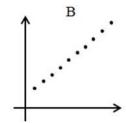
2. [Maximum mark: 6]

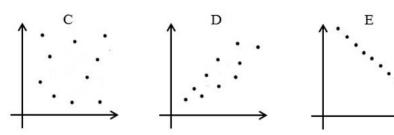
There are seven different plants being studied in a biology class. For each plant, x is the diameter of the stem in centimetres and y is the average leaf length in centimetres. Let r be the Pearson's product-moment correlation coefficient.

- (a) Write down the possible minimum and maximum values of r. [2]
- (b) Copy and complete the following table by noting which scatter diagram A, B, C, D or E corresponds to each value of *r*. [4]

correlation coefficient r	scatter diagram
-1	
-0.8	
0	
0.5	







- (a) $r_{\text{max}} = 1$, $r_{\text{min}} = -1$
- (b) correlation coefficient r scatter diagram -1 E -0.8 A 0 C 0.5 D

3. [Maximum mark: 5]

Let A and B be events such that P(A) = 0.3, P(B) = 0.6 and $P(A \cup B) = 0.7$. Find $P(A \mid B)$.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

0.7 = 0.3 + 0.6 - $P(A \cap B)$

$$P(A \cap B) = 0.2$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{0.2}{0.6}$$

$$P(A \mid B) = \frac{1}{3}$$

4. [Maximum mark: 5]

Let n and n+1 be any two consecutive integers where $n \in \mathbb{Z}$. Hence, prove that the sum of the squares of any two consecutive integers is odd.

n and n+1 are any two consecutive integers where $n \in \mathbb{Z}$

$$n^{2} + (n+1)^{2} = n^{2} + n^{2} + 2n + 1$$
$$= 2n^{2} + 2n + 1$$
$$= 2(n^{2} + n) + 1$$

The expression $2(n^2 + n)$ is divisible by 2, so it must be an even number

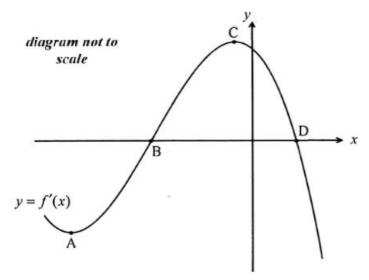
Adding 1 to an even number produces an odd number

Hence, the expression $2(n^2+n)+1$ must be an odd number

Therefore, the sum of any two consecutive integers is odd *Q.E.D.*

5. [Maximum mark: 7]

The diagram shows part of the graph of y = f'(x), the **derivative** of function f. The x-intercepts are at points B and D and there is a minimum at point A and a maximum at point C.



- (a) (i) Write down the value of f'(x) at B.
 - (ii) Hence, verify that the x-coordinate of B is also the x-coordinate of a minimum on the graph of f.

[3]

[1]

- (b) Which of the points A, C or D corresponds to a maximum on the graph of f?
- (c) Verify that C corresponds to a point of inflexion on the graph of f. [3]
 - (a) (i) f'(x) = 0 at point B
 - (ii) As x increases and passes through the x-coordinate of B f'(x) changes from negative to positive.
 Hence, the graph of f is decreasing before the x-coordinate of B and increasing after the x-coordinate of B.
 Thus, the graph of f has a minimum at the x-coordinate of B.
 - (b) The graph of f has a maximum at point D
 - (c) As x increases and passes through C, f'(x) is increasing then decreasing; that is, f'(x) changes from positive to negative at point C.

 Thus, point C is an inflexion point on the graph of f.

6. [Maximum mark: 6]

A geometric series has a common ratio of 2^x .

- (a) Find the values of x for which the sum to infinity of the series exists. [2]
- (b) If the first term of the series is 14 and the sum to infinity is 16, find the value of x. [4]
 - (a) S_{∞} exists if $-1 < r < 1 \implies |r| < 1$ $|2^{x}| < 1 \implies x < 0$
 - (b) $S_{\infty} = \frac{u_1}{1 r}$ $16 = \frac{14}{1 2^x}$ $1 2^x = \frac{14}{16} = \frac{7}{8}$ $2^x = \frac{1}{8}$ x = -3

Section B

7. [Maximum mark: 13]

IB Mathematics: Analysis & Approaches SL

All of the students in a class of 35 must study at least one science – either Biology or Chemistry. Some of the students study both. 25 students study Biology and 15 students study Chemistry.

- (a) (i) Find the number of students who study both Biology and Chemistry
 - (ii) Write down the number of students who study only Biology. [3]
- (b) One student is selected at random from the class.
 - (i) Find the probability that the student studies only one science.
 - (ii) Given that the student selected studies only one science, find the probability that the student studies Biology. [5]

Let B be the event that a student studies Biology and C be the event that a student studies Chemistry.

- (c) Show that B and C are **not** mutually exclusive. [2]
- (d) Show that B and C are **not** independent events. [3]

■ worked solution ■

- (a) (i) $35 = 25 + 15 n(B \cap C)$ $n(B \cap C) = 5$ 5 students study both Biology and Chemistry
 - (ii) 25 students study Biology; 5 students study both Biology and Chemistry Thus, 20 students study only Biology
- (b) (i) # of students studying only Chemistry = 15-5=10Thus, P(one science) = $\frac{20+10}{35} = \frac{30}{35} = \frac{6}{7}$
 - (ii) P(Biology | one science) = $\frac{P(B \cap \text{one science})}{P(\text{one science})} = \frac{\frac{20}{35}}{\frac{6}{7}} = \frac{4}{7} \cdot \frac{7}{6} = \frac{4}{6} = \frac{2}{3}$
- (c) If *B* and *C* are mutually exclusive then $P(B \cup C) = P(B) + P(C)$. However, $P(B \cup C) = 1$ and $P(B) + P(C) = \frac{25}{35} + \frac{15}{35} \neq 1$. Thus, *B* and *C* are **not** mutually exclusive.
- (d) If *B* and *C* are independent events then $P(B \cap C) = P(B) \cdot P(C)$. However, $P(B \cap C) = \frac{5}{35} = \frac{1}{7}$ and $P(B) \cdot P(C) = \frac{25}{35} \cdot \frac{15}{35} = \frac{5}{7} \cdot \frac{3}{7} \neq \frac{1}{7}$

Thus, B and C are **not** independent events.

8. [Maximum mark: 16]

The function f is defined as $f(x) = \frac{x+1}{\ln(x+1)}$, x > 0.

- (a) (i) Show that $f'(x) = \frac{\ln(x+1)-1}{(\ln(x+1))^2}$.
 - (ii) Find f''(x), writing it as a single rational expression [6]
- (b) (i) Find the value of x satisfying the equation f'(x) = 0.
 - (ii) Show that this value gives a minimum value for f(x), and determine the minimum value of the function. [7]
- (c) Find the x-coordinate of the one point of inflexion on the graph of f. [3]

■ worked solution ■

(a) (i) Using the quotient rule.

$$f'(x) = \frac{\left(\ln(x+1)\right)\left(1\right) - \left(x+1\right)\left(\frac{1}{x+1}\right)}{\left(\ln(x+1)\right)^2}$$

So
$$f'(x) = \frac{\ln(x+1)-1}{(\ln(x+1))^2}$$

(ii) **METHOD 1**

Using the quotient rule.

$$f''(x) = \frac{\frac{\left(\ln(x+1)\right)^2}{x+1} - \frac{2\ln(x+1)\left(\ln(x+1)-1\right)}{x+1}}{\left(\ln(x+1)\right)^4}$$
$$= \frac{2\ln(x+1) - \left(\ln(x+1)\right)^2}{\left(x+1\right)\left(\ln(x+1)\right)^4}$$
$$= \frac{2-\ln(x+1)}{\left(x+1\right)\left(\ln(x+1)\right)^3}$$

worked solution for question 8 continues on next page >>

worked solution for question 8 continued

(a) (ii) METHOD 2

$$f'(x) = \frac{1}{\ln(x+1)} - \frac{1}{\left(\ln(x+1)\right)^2}$$

$$f''(x) = \frac{-1}{\left(x+1\right)\left(\ln(x+1)\right)^2} + \frac{2}{\left(x+1\right)\left(\ln(x+1)\right)^3}$$

$$= \frac{2-\ln(x+1)}{\left(x+1\right)\left(\ln(x+1)\right)^3}$$

(b) (i)
$$ln(x+1) = 1$$

 $x = e-1$

(ii) **METHOD 1**

Using a first derivative test.

For example, when x = 1, $f'(x) = \ln 2 - 1 (< 0)$.

For example, when x = 2, $f'(x) = \ln 3 - 1 (> 0)$.

Hence, x = e - 1 gives a minimum value.

$$f(e-1) = \frac{e-1+1}{\ln(e-1+1)} = \frac{e}{\ln(e)} = \frac{e}{1} = e$$

Thus, the minimum value is e.

METHOD 2

Using the second derivative test.

$$f''(e-1) = \frac{1}{e} > 0$$

Hence, x = e - 1 gives a minimum value.

$$f(e-1) = \frac{e-1+1}{\ln(e-1+1)} = \frac{e}{\ln(e)} = \frac{e}{1} = e$$

Thus, the minimum value is e.

(c)
$$2-\ln(x+1) = 0$$

 $\ln(x+1) = 2$
 $x = e^2 - 1$

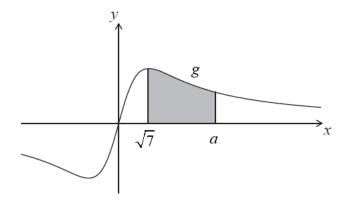
9. [Maximum mark: 16]

The function g is defined by $g(x) = \frac{3x}{x^2 + 7}$.

(a) Show that
$$g'(x) = \frac{21 - 3x^2}{(x^2 + 7)^2}$$
. [5]

(b) Find
$$\int \frac{3x}{x^2 + 7} dx$$
. [4]

The diagram below shows a portion of the graph of g.



(c) The shaded region is enclosed by the graph of g, the x-axis, and the lines $x = \sqrt{7}$ and x = a such that $a > \sqrt{7}$. This region has an area of $\ln 8$. Find the value of a. [7]

■ worked solution

(a) Applying the quotient rule:

$$g(x) = \frac{(x^2+7)(3)-(2x)(3x)}{(x^2+7)^2} = \frac{3x^2+21-6x^2}{(x^2+7)^2}$$

Thus,
$$g'(x) = \frac{21 - 3x^2}{(x^2 + 7)^2}$$
 Q.E.D.

(b)
$$\int \frac{3x}{x^2 + 7} dx = \int \frac{1}{x^2 + 7} 3x dx$$
 let $u = x^2 + 7$, then $du = 2x dx \implies \frac{3}{2} du = 3x dx$
Substituting gives $\int \frac{3x}{x^2 + 7} dx = \int \frac{1}{u} \cdot \frac{3}{2} du = \frac{3}{2} \int \frac{1}{u} du = \frac{3}{2} \ln u$
Thus, $\int \frac{3x}{x^2 + 7} dx = \frac{3}{2} \ln(x^2 + 7) + C$

worked solution for question 9 continues on next page >>

worked solution for question 9 continued

(c)
$$\operatorname{area} = \int_{\sqrt{7}}^{a} \frac{3x}{x^2 + 7} dx = \ln 8$$

 $\frac{3}{2} \ln (x^2 + 7) \Big]_{\sqrt{7}}^{a} = \ln 8$
 $\frac{3}{2} \Big[\ln (a^2 + 7) - \ln (7 + 7) \Big] = \ln 8$
 $\ln \frac{a^2 + 7}{14} = \frac{2}{3} \ln (2^3)$
 $\ln \frac{a^2 + 7}{14} = \ln \Big[(2^3)^{\frac{2}{3}} \Big]$
 $\ln \frac{a^2 + 7}{14} = \ln 4$
 $\frac{a^2 + 7}{14} = 4 \implies a^2 + 7 = 56 \implies a^2 = 49$

 $a = \pm 7$; but given that $a > \sqrt{7}$

Thus, a = 7